24/7 Vacations Web Search

Search results

  1. Results from the 24/7 Vacations Content Network
  2. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: where ħ is the reduced Planck constant, i the imaginary unit, x is the ...

  3. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    The classical definition of angular momentum is =.The quantum-mechanical counterparts of these objects share the same relationship: = where r is the quantum position operator, p is the quantum momentum operator, × is cross product, and L is the orbital angular momentum operator.

  4. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In Newtonian mechanics, momentum ( pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity (also a vector quantity), then the object's momentum p ...

  5. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    between the position operator x and momentum operator p x in the x direction of a point particle in one dimension, where [x, p x] = x p x − p x x is the commutator of x and p x , i is the imaginary unit, and ℏ is the reduced Planck constant h/2π, and is the unit operator. In general, position and momentum are vectors of operators and their ...

  6. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Position and momentum spaces. In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space.

  7. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved.

  8. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    Operator (physics) An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry (which makes the concept of a group useful in this context). Because of this, they are useful tools in classical mechanics.

  9. Creation and annihilation operators - Wikipedia

    en.wikipedia.org/wiki/Creation_and_annihilation...

    Creation and annihilation operators. Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. [1] An annihilation operator (usually denoted ) lowers the number of particles in a given state by one.